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Abstract 

In this chapter, we first survey strategies for mathematical modeling of gene regulatory networks for 

capturing physiologically important dynamics in cells such as oscillations. We focus on models based on 

ordinary differential equations with various forms of nonlinear functions that describe gene regulations. We 

next use a small system of a microRNA and its mRNA target to illustrate a recently discovered oscillator 

driven by noncoding RNAs. This oscillator has unique features that distinguish itself from conventional 

biological oscillators, including the absence of imposed negative feedback loop and the divergence of the 

periods. The latter property may serve crucial biological functions for restoring heterogeneity of cell 

populations on the timescale of days. We describe general requirements for obtaining the limit cycle 

oscillations in terms of underlying biochemical reactions and kinetic rate constants. We discuss future 

directions stemming from this minimal, noncoding RNA-based model for gene expression oscillation. 
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Introduction 

Biological oscillators have been studied extensively due to their functional roles in controlling cellular 

activities with rhythmic gene expression dynamics. These functions include metabolic cycles, circadian 

rhythms, developmental timing, pattern formation, and cell cycle regulation in early embryo and cancer 

cells [1-5]. It has been known for several decades that negative feedback loop with a delay can generate 

biochemical oscillations [6-8]. This concept has been helpful for designing synthetic circuits that can act as 

oscillators [9], in which the expression of a gene is negatively regulated by itself via an intermediate gene. 

The studies of negative feedback loops in gene regulatory networks also facilitated the discoveries of some 

natural oscillators in cells [10,11]. However, it is not always possible to relate biochemical reaction 

networks, including gene regulatory networks, to intuitively identifiable delayed negative feedback. For 

example, mathematical modeling showed that a double-phosphorylation cycle of a MAP kinase network 

can generate sustained oscillation without any imposed feedback loop [12,13]. 

Oscillatory dynamics of noncoding RNAs (ncRNAs), such as microRNAs, have been widely observed in 

systems such as circadian rhythms, metabolic cycles, and development [14-16]. However, until recently 

experimental and theoretical studies of the roles of noncoding RNAs in oscillations had been confined in 

the framework of the negative feedback loops of gene expression. One example of these ncRNA circuits is 

the Hes1-miR-9 network in which the combination of self-inhibitory loop and the cross-repression between 

Hes1 and miR-9 produces oscillatory dynamics [17]. While ncRNAs were not generally considered to be 

involved in core negative feedback loops in many systems, they were found to increase the cell-to-cell 

variability of their target mRNAs’ expressions, and the complex correlations between the expressions of 

ncRNAs and their target mRNAs can be difficult to interpret in some scenarios [18-20]. A recent modeling 

study showed that interactions between microRNA and mRNAs alone can produce sustained oscillations 

even in the absence of transcription-level feedback [21], and it suggested potential biological functions of 

the new RNA-based oscillator. In this chapter, we will briefly survey modeling strategies for studying gene 

expression and ncRNA dynamics. We will then use a representative model to demonstrate key components 



and assumptions for producing oscillatory dynamics from a simple ncRNA-mRNA reaction network. We 

will also discuss the biological implications of this and related models. 

 

 

Models 

To capture dynamics of gene expression, models based on ordinary differential equations (ODEs) are often 

used with linear or nonlinear functions that describe interactions of molecular species. There are two 

categories of these functions. The first type is functions that produce sigmoidal-curve-like relationship 

between input and output (Figure 1A). The most common function in this category is the Hill function. For 

example, an inhibitory form of the Hill function is 𝑓𝑓(𝑥𝑥) = 1/(1 + (𝑥𝑥/𝐾𝐾)𝑛𝑛), where 𝑥𝑥 represents the level 

of a regulator for the expression of a gene (either the one coding for itself or another one), 𝐾𝐾 is the inhibition 

threshold, and 𝑛𝑛 is the Hill exponent controlling the nonlinearity or the steepness of the function. A Hill 

function can be used in the production term of a state variable representing a gene product. In this case, 𝑥𝑥 

is a transcriptional or translational regulator. If we assume gene product 𝑦𝑦 is regulated by 𝑥𝑥, then the ODE 

for molecular species 𝑦𝑦 can be written in the form  

𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝑏𝑏𝑏𝑏(𝑥𝑥) − 𝑘𝑘𝑘𝑘,                                                                       (1) 

where 𝑏𝑏 is the maximum synthesis rate and 𝑘𝑘 is the degradation rate constant for this molecular species. In 

an ODE model for the synthetic circuit of the repressilator [9], a loop containing three genes, each 

expressing a protein that represses the next gene in the loop (Figure 1B), the level of each protein is used 

as the regulator of the next gene’s expression in a form similar to 𝑓𝑓(𝑥𝑥). A simplified version of this 

repressilator model contains three ODEs in the form of Eq 1. With this model, a sustained oscillation is 

produced from this imposed negative feedback loop (Figure 1C). When there are multiple regulators for 

the same gene, multiplicative or additive combinations of Hill functions can be used to describe these 



complex regulations [22]. In the context of ncRNAs, the Hill function can also be used to describe the 

influence of a regulator (ncRNA) on its target’s degradation rather than production. For example, in an 

ODE model for the Hes1-miR-9 network, Hes1 mRNA’s half-life is regulated by miR-9 in a form similar 

to 𝑓𝑓(𝑥𝑥) [17]. It should be noted, however, that in this microRNA model, miR-9 is not involved in a negative 

feedback loop (Figure 1D). Instead, Hes1 regulates its own expression with a delay, and this loop is 

essential for producing sustained oscillations. In addition to the Hill function, a hyperbolic tangent function 

(sometimes referred to as a sigmoidal function) such as 𝑔𝑔(𝑥𝑥) = 1/(1 + 𝑒𝑒−𝜎𝜎(𝑤𝑤0+𝑤𝑤𝑤𝑤)), where 𝜎𝜎 determines 

the steepness of the nonlinear function, 𝑤𝑤 is the weight of the activation/repression by regulator level 𝑥𝑥, 

and 𝑤𝑤0 is the offset, can also be used to describe gene regulation. This form of ODE was used for modeling 

the circadian clock in Arabidopsis and the model was able to capture experimental data of oscillatory gene 

dynamics under multiple conditions [23]. 

 

 

 



Figure 1. Conventional approaches to model biological oscillators. A. An illustration of the response 

curve of the sigmoidal function type. B.  Influence diagram of the repressilator. C. Example simulation 

result for the simplified repressilator model. D. Influence diagram of the Hes1-miR-9 oscillator model. 

 

While the sigmoidal function type is very popular due to its simplicity in implementation, it is 

phenomenological, rather than mechanistic, at the level of biochemical reactions. A requirement of using 

the Hill function or other similar functions is that one must abstract biochemical reactions into signed 

directed graphs (e.g. Figure 1B) before constructing a model. This abstraction is helpful in many scenarios, 

but it may lead to over-simplification in others. Perhaps more importantly, because of the requirement, it is 

not feasible to capture some interesting dynamics of gene regulation by using the sigmoidal functions or 

their associated signed directed graphs. For example, networks of multisite phosphorylation cycles of MAP 

kinase (post-translational control of protein activities) can produce multistability (a phenomenon used to be 

associated with a positive feedback loop in gene regulation) [24], and oscillation [12,13]. Yet, there is no 

intuitive way to relate the essential components for these emerging dynamics to sigmoidal functions or a 

positive/negative feedback loop in a graph. The strategies for describing these reaction networks involve a 

different category of functions based on the law of mass action. Specifically, the rate of a reaction, including 

binding, unbinding, production, and degradation, is proportional to concentration(s) of reactant(s) in these 

elementary reactions. Instead of introducing the mass-action-based ODE models in general, we will use a 

recent model for oscillations driven by ncRNA-mRNA interactions as an example to illustrate its structure 

and usefulness in studying ncRNAs [21]. 

In this simple model (Figure 2A), we describe an mRNA that contains two binding sites of a microRNA. 

The system contains twelve elementary biochemical reactions 
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Here, 𝑅𝑅�  and 𝑟̂𝑟  represent both the molecular species and the corresponding concentrations of unbound 

mRNA and unbound microRNA respectively. 𝐶̂𝐶1 and 𝐶̂𝐶2 are the concentrations of a 1:1 complex and the 

2:1 complex respectively. Because the mRNA has two binding sites of the microRNA, which are assumed 

to be identical, 𝐶̂𝐶1 represents either form of the 1:1 complex and its concentration. The total concentration 

of 1:1 complex is 2𝐶̂𝐶1. 𝑠𝑠𝑅𝑅 is the transcription rate constant of mRNA. 𝑠𝑠𝑟𝑟 is the transcription rate constant 

of microRNA. 𝑘𝑘𝑅𝑅0 is the degradation rate constant of the unbound mRNA. 𝑘𝑘𝑅𝑅1  and 𝑘𝑘𝑅𝑅2 are the degradation 

rate constants of the mRNA in the 1:1 complex and the 2:1 complex respectively. 𝑘𝑘𝑟𝑟1  and 𝑘𝑘𝑟𝑟2  are the 

degradation rate constants of the microRNA in the 1:1 complex and in the 2:1 complex respectively.  𝑘𝑘𝑟𝑟0 is 

the degradation rate constant of the unbound microRNA. 𝜅𝜅on is the association rate constant. 𝜅𝜅off is the 

dissociation rate constant. It should be noted that this model is very general: it can be easily modified to 

study an mRNA with multiple binding sites for different microRNAs; and it can be used to describe other 

(nc)RNA species (e.g. 𝑅𝑅� can represent the concentration of a long-noncoding RNA that harbors multiple 

binding sites for another RNA) or even proteins. 

We make the following changes to relate the dimensionless variables and parameters to the original ones: 

𝑡̂𝑡 = 𝑡𝑡/𝑘𝑘𝑅𝑅0 ,        𝑅𝑅� = 𝑅𝑅𝑠𝑠𝑟𝑟/𝑘𝑘𝑅𝑅0 ,       𝑟̂𝑟 = 𝑟𝑟𝑠𝑠𝑟𝑟/𝑘𝑘𝑅𝑅0 ,       𝐶̂𝐶1 = 𝐶𝐶1𝑠𝑠𝑟𝑟/𝑘𝑘𝑅𝑅0 ,          𝐶̂𝐶2 = 𝐶𝐶2𝑠𝑠𝑟𝑟/𝑘𝑘𝑅𝑅0 

𝜎𝜎𝑅𝑅 = 𝑠𝑠𝑅𝑅/𝑠𝑠𝑟𝑟 ,      𝜅𝜅on = 𝑘𝑘on𝑠𝑠𝑟𝑟/𝑘𝑘𝑅𝑅0
2,       𝜅𝜅off = 𝑘𝑘off/𝑘𝑘𝑅𝑅0 ,         𝛾𝛾 = 𝑘𝑘𝑟𝑟0/𝑘𝑘𝑅𝑅0 ,                        (2) 

𝛼𝛼1 = 𝑘𝑘𝑅𝑅1/𝑘𝑘𝑅𝑅0 ,         𝛼𝛼2 = 𝑘𝑘𝑅𝑅2/𝑘𝑘𝑅𝑅0,        𝛽𝛽1 = 𝑘𝑘𝑟𝑟1/𝑘𝑘𝑟𝑟0,      𝛽𝛽2 = 𝑘𝑘𝑟𝑟2/𝑘𝑘𝑟𝑟0. 

Here, 𝜎𝜎𝑅𝑅 represents the synthesis rate constant of the second mRNA relative to that of the microRNA. 𝛾𝛾 

represents the degradation rate constant of the unbound microRNA relative to that of the unbound mRNA. 

We define 𝛼𝛼1, 𝛼𝛼2, 𝛽𝛽1 and 𝛽𝛽2 relative degradation factors (RDFs), and they represent the degradation rate 

constants of the mRNA (𝛼𝛼) and microRNA (𝛽𝛽) in the complexes (1 and 2) relative to those of the unbound 



forms of the same molecules, respectively. With the law of mass action, we then use the following ODEs 

to describe the dynamics of the three species 

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝜎𝜎𝑅𝑅 − 2𝜅𝜅on𝑅𝑅𝑅𝑅 + 2𝜅𝜅off𝐶𝐶1 − 𝑅𝑅 + 2𝛽𝛽1𝛾𝛾𝐶𝐶1 

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 1 − 2𝜅𝜅on𝑅𝑅𝑅𝑅 + 2𝜅𝜅off𝐶𝐶1 − 2𝜅𝜅on𝐶𝐶1𝑟𝑟 + 2𝜅𝜅off𝐶𝐶2 − 𝛾𝛾𝛾𝛾 + 2𝛼𝛼1𝐶𝐶1 + 2𝛼𝛼2𝐶𝐶2 

𝑑𝑑𝐶𝐶1 𝑑𝑑𝑑𝑑⁄ = 𝜅𝜅on𝑅𝑅𝑅𝑅 − 𝜅𝜅off𝐶𝐶1 − 𝜅𝜅on𝐶𝐶1𝑟𝑟 + 𝜅𝜅off𝐶𝐶2 − 𝛼𝛼1𝐶𝐶1 − 𝛽𝛽1𝛾𝛾𝐶𝐶1 + 𝛽𝛽2𝛾𝛾𝐶𝐶2    (3) 

𝑑𝑑𝐶𝐶2 𝑑𝑑𝑑𝑑⁄ = 2𝜅𝜅on𝐶𝐶1𝑟𝑟 − 2𝜅𝜅off𝐶𝐶2 − 𝛼𝛼2𝐶𝐶2 − 2𝛽𝛽2𝛾𝛾𝐶𝐶2. 

Note that because of the symmetrical binding assumption, there are two identical 1:1 complexes described 

by the same variable 𝐶𝐶1 (or equivalently 𝐶̂𝐶1). Therefore, all the reaction rates that involve the 1:1 complex 

and appear in variables 𝑅𝑅, 𝑟𝑟, 𝐶𝐶2 are multiplied by 2 in Eq 3. In the model, there are four RDFs: 𝛼𝛼1, 𝛼𝛼2, 𝛽𝛽1, 

and 𝛽𝛽2. 𝛼𝛼1 and 𝛼𝛼2 represent the degradation rate constants of the mRNA in the 1:1 and 2:1 complexes, 

respectively, relative to its degradation rate constant in the unbound form. 𝛽𝛽1 and 𝛽𝛽2 are the corresponding 

RDFs for the microRNA. A key difference between this mass-action-based ODE model and those based on 

sigmoidal function type is that the nonlinearity of the mass-action-based model is only from the binding of 

two molecular species, for which the rate of the reaction is proportional to both concentrations. 

The system shown in Eq 3 can be used to capture oscillation and other dynamics of ncRNAs. It is possible 

to convert Eq 3 into a two-state-variable (2D) system [21], but since it may reduce the interpretability of 

the model, we will use Eq 3 to describe the emergence of oscillation first. With a set of biologically plausible 

parameters (e.g. 𝜅𝜅on = 10000 , 𝜅𝜅off = 1 , 𝛾𝛾 = 0.25 , 𝛼𝛼1 = 𝛽𝛽1 = 1 , 𝛼𝛼2 = 12 , 𝛽𝛽2 = 12 , 𝜎𝜎𝑅𝑅 = 3.6 ), we 

observed sustained oscillations for all state variables in Eq 3 (Figure 2B). In these oscillations, the cycles 

of the unbound mRNA and the unbound microRNA are out of phase, whereas the 1:1 complex is in phase 

with the unbound mRNA. Unlike other molecular species, the 2:2 complex’s amplitude is smaller, and it is 

not depleted even at the trough of the oscillation. With the example set of parameters, the period of the 

oscillation is approximately 10𝑡𝑡1/2, where 𝑡𝑡1/2 is the half-life of the mRNA. The half-lives of mammalian 



mRNAs are typically several hours [25]. This oscillation produced form RNA-RNA interactions therefore 

has a slow oscillation with a period on the timescale of days. The biological functions of these slow 

oscillations are yet to be determined experimentally, but it was proposed that they may drive the formation 

of heterogeneous cell populations, a phenomenon observed in cancer and progenitor cells (see details later) 

[21]. An important feature of the RNA-based oscillator that further supports the proposed function is the 

divergence of the periods when some parameters of the model vary. For example, a slight decrease in the 

production rate mRNA 𝜎𝜎𝑅𝑅 results in a significant increase of the period (Figure 2C). More generally, when 

𝜎𝜎𝑅𝑅 changes, the system undergoes Hopf bifurcations at the two points of this parameter space, which define 

the boundaries of the region where the system can oscillate continuously with the existence of stable limit 

cycles (Figure 2D). Importantly, when 𝜎𝜎𝑅𝑅 approaches the lower bound of the limit cycle region (the left 

Hopf bifurcation point in Figure 2D), the periods of the limit cycles change abruptly (Figure 2D, red 

curve). This dramatic change of periods is in stark contrast to oscillations driven by simple negative 

feedback loops. For example, when a similar parameter changes in the repressilator model, for example, 

the periods of the limit cycles do not change significantly [21]. This shows that the RNA-based oscillator 

free of imposed feedback loop and the negative-feedback-driven oscillator have distinct sources for limit 

cycle formation. In fact, the same model shown in Eq 3 can generate saddle-node bifurcations in a parameter 

region adjacent to the one for limit cycle oscillations. Importantly, it was shown that the lower bound of the 

limit cycle region is close to a saddle-node bifurcation point, and the oscillation-initiating saddle-node on 

the invariant circle (SNIC) bifurcation is responsible for the divergence of the periods [21]. Interestingly, 

even though the RNA-RNA interaction model (Eq 3) does not contain any imposed feedback, it can act as 

both a toggle switch and an oscillator. The toggle switch behavior of the model was previously shown to 

be useful for explaining experimental observations on microRNA-driven tissue boundary formation [26]. 

 



 

Figure 2. Model structure and simulations of a ncRNA-based oscillator. A. An illustration of 

biochemical reactions involving an mRNA and a microRNA. B and C. Simulation results for the model 

shown in Eq 3 (see main text for other parameter values). D. The left axis shows the steady state level of 

free mRNA with respect to the production rate constant. HB stands for Hopf bifurcation. Shaded area shows 

a region where only limit cycles are stable. The right axis and the red curve show the periods of the limit 

cycles. 

 

Nonetheless, the divergence of the oscillations suggests that the RNA-based oscillator itself may not be a 

good pacemaker which one might expect from a biological oscillator. This is because slight variations of 

parameter values will lead to large changes of period, a key metric of a biological ‘clock’. In fact, in the 

presence of transcriptional noise or other sources of stochasticity, the slow and divergent oscillator driven 

by ncRNAs can generate irregular patterns of switches between two states representing distinct 

concentration profiles: high-mRNA/low-microRNA, and low-RNA/high-microRNA (Figure 3A). Here, 

the changes in concentrations (high and low) are reflected in both total mRNA (microRNA) and free mRNA 

(microRNA). While the irregularity of state changes makes the oscillator a poor pacemaker, it can provide 

a strategy for a cell population to diversify themselves in a robust manner. For an initial population with 

homogeneous expression condition, possibility following a drug treatment or a sorting experiment, cells 

switch back and forth between two states asynchronously with the help of the diverging oscillator and 



stochasticity, which establishes two subpopulations and maintains their proportions (Figure 3B). The 

oscillator-driven state changes generate this type of population-level, stationary-phase heterogeneity more 

robustly than state changes induced by stochasticity alone. The latter model had been commonly used to 

explain cancer and progenitor cell heterogeneity in combination with multistable systems [27], which 

contain point attractors rather than limit cycles. 

 

 

 

Figure 3. Potential biological functions of the ncRNA-based oscillator. A. Stochastic simulations for 

two representative cells under the control of the model shown in Eq 3 with the same initial condition. 

Transcriptional noise was included in stochastic ODEs stemming from Eq 3. B. An illustration of 

heterogeneity restoration of a cell population with a homogeneous initial condition. 

 

There are several assumptions in the model underlying Eq 3 regarding the molecular events. It is assumed 

that the mRNA and microRNA can form two symmetrical 1:1 complexes each of which one of the two 

binding sites are occupied, respectively. It was shown that the symmetry of the 1:1 complexes is not 

required for the limit cycle formation: one can assume that the binding to a specific site is required and 

occurs before the binding to the other site without losing oscillations [21]. However, the assumption that 

the 1:1 complex and the 2:1 complex are formed sequentially is crucial for oscillation. In other words, state 

variable 𝐶𝐶1 is necessary for Hopf bifurcation in the model shown in Eq 3. It was also shown that a similar 



model with only one binding site cannot produce Hopf bifurcation and it associated oscillation [21]. The 

nonexistence of Hopf bifurcation for models without 𝐶𝐶1 or 𝐶𝐶2 with arbitrary positive rate constants can be 

proved with analytical methods such as the Routh-Hurwitz criterion [21]. In addition to these “structural” 

requirements, values of kinetic rate constants can also be important for obtaining oscillations. For example, 

the transcription rate of the mRNA needs to be close to a threshold of activation at which the steady state 

mRNA concentration starts to increase significantly. Another crucial parametric relationship for oscillation 

is that the 2:1 complex needs to have significantly different degradation rate constants for both mRNA and 

microRNA from the corresponding rate constants in free RNA forms and the 1:1 complex [21]. This 

requirement implies a biologically plausible cooperativity in which the formation of high-order complexes 

triggers the enhanced or reduced degradation of both the regulator and the target.  

 

Conclusions and future perspectives 

Mathematical modeling has been instrumental in improving the understanding of gene regulation. In 

particular, it connected oscillatory gene expression dynamics crucial for cellular and organismal level 

physiology to gene regulatory networks with negative feedback loops. The expansion of this type of 

connections to elementary reaction networks involving noncoding RNAs will help the discovery of new 

regulatory circuits in cells whose reversible state transitions are important for tissue-level functions. The 

absence of explicit feedback loops in the RNA-based models (e.g. Eq 3) challenges the conventional view 

that oscillations in gene expression requires imposed feedback loops such as negative transcriptional 

regulation of a gene by the products of itself. The simplicity of such RNA-based models (e.g. Eq 3) will 

not only facilitate the future experimental tests of the model predictions but also contribute to the 

understanding of complex regulatory gene networks as building blocks for larger models. Since ncRNAs 

and mRNAs work in systems much larger than the two-binding-site model shown in Eq 3, new emerging 

dynamics may arise when high-order RNA complexes are considered. For example, recent work showed 



the possibility for a system of a mRNA containing four microRNA binding sites to generate three stable 

steady states without transcriptional feedback [28]. These systems have important functionals such as 

regulating cancer cell plasticity in the spectrum of epithelial-mesenchymal transition (EMT) (e.g. key EMT 

gene ZEB1 mRNA harbors more than three binding sites for miR-200). It will also be interesting to 

investigate complex interactions of multiple limit cycles and point attractors with larger ncRNA systems in 

the future. Furthermore, the integration of RNA-decay regulation with translational control may lead to 

additional dynamical features that are not captured by the RNA-based model. 

The RNA-driven oscillations predicted by the model have long and diverging periods which may render 

difficulties in direct observations of these oscillations experimentally. However, these unique features may 

allow the diverging oscillators to interact with important systems such as the cell cycle control circuit and 

the circadian clock to achieve useful performance. For example, diverging periods of the oscillator can help 

to diversify cell cycle phases [3]. The robust heterogeneity-restoring mechanism may allow cancer cells to 

gain survival advantages during drug treatment or enable regeneration from progenitor cells at an 

appropriate pace after injury. Future experimental and theoretical studies are warranted to obtain a deeper 

understanding of the ncRNA circuits’ roles in these important physiological scenarios.   
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